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The Intel Science and Technology Center (ISTC) for Cloud 
Computing is a five year, $15M research partnership 
between Carnegie Mellon, Georgia Tech, Princeton, UC 
Berkeley, U. Washington, and Intel to research 
underlying infrastructure enabling the future of cloud 
computing.  Now in its third year, the center has made 
significant advances in the areas of specialization, 
automation, big data, and to-the-edge, with 150+ papers, 
popular open source code releases, and initial tech 
transfer into Intel.  This talk will overview the center’s 
research agenda, highlight some of the key results, and 
preview where things are headed next.  The last part of 
the talk will provide a deeper dive into the center’s 
research on machine learning over big data (“Big 
Learning”). 
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ISTC for Cloud Computing 

Underlying Infrastructure 
enabling the future 
of cloud computing 

www.istc-cc.cmu.edu 

$11.5M over 5 years + 4 Intel researchers.   Launched Sept 2011 

25 faculty 
87 students 



ISTC for Cloud Computing: Faculty 

• Carnegie Mellon University 
▫ Greg Ganger (PI), Dave Andersen, Guy Blelloch, Garth 

Gibson, Mor Harchol-Balter, Todd Mowry, Onur Mutlu, 
Priya Narasimhan, M. Satyanarayanan, Dan Siewiorek, 
Alex Smola, Eric Xing 

• Georgia Tech 
▫ Greg Eisenhower, Ada Gavrilovska, Ling Liu, Calton Pu,  

Karsten Schwan, Matthew Wolf, Sudha Yalamanchili 

• Princeton University 
▫ Mike Freedman, Margaret Martonosi 

• University of California at Berkeley 
▫ Anthony Joseph, Randy Katz, Ion Stoica 

• University of Washington 
▫ Carlos Guestrin 

• Intel Labs 
▫ Phil Gibbons (PI), Michael Kaminsky, Mike Kozuch, 

Babu Pillai 



• Highlights from 4 Research Pillars 

▫ Specialization 

▫ Automation 

▫ Big Data 

▫ To the Edge 

 

• Deeper dive on  
Big Learning 

Outline 



Cloud Computing & Homogeneity 

• Traditional data center goal: Homogeneity 

+ Reduce administration costs: maintenance, 
diagnosis, repair 

+ Ease of load balancing 

Ideal: single Server Architecture tailored to the workload 
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 Specialization Big Data To the Edge Automation 



Homogeneity: Challenges 

• No single workload: Mix of customer workloads 

▫ Computation-heavy apps (powerful CPUs, little I/O BW) 

▫ Random I/O apps (I/O latency bound) 

▫ Streaming apps (I/O BW bound, little memory) 

▫ Memory-bound apps 

▫ Apps exploiting hardware assists such as GPUs 

 

• Common denominator Server Architecture falls short 

▫ E.g., Two orders of magnitude loss in energy efficiency 



Targeting the Sweet Spot in Energy Efficiency 

Theme Research Project Process 9 

Efficiency vs. Speed 

(Includes 0.1W power overhead) 

* Numbers from spec sheets 

Fixed costs 
dominate 

Fastest processors 
many not be most 

efficient 

FAWN targets sweet 
 spot in efficiency: 

Slower CPU + Flash storage 

[FAWN: A Fast Array of Wimpy Nodes, Andersen et al, SOSP’09] 



Specialization Pillar 

10 

• Specialization is fundamental to efficiency 

▫ No single platform best for all application types 

▫ Called division of labor in sociology 
 

• Cloud computing must embrace specialization 

▫ As well as consequent heterogeneity and change-
over-time 

▫ Stark contrast to common cloud thinking 
 

• New approaches needed to enable… 

▫ Effective mixes of targeted and general platform 
types, heterogeneous multi-cores, hybrid 
memories 

 

 

Many- 
core 

Phase-change  
memory (PCM) 

Low power 
nodes 

 Specialization Big Data To the Edge Automation 



Specialization Projects 

• S1: Specialized Platforms of Wimpy Nodes 
▫ exploring + extending range of apps that run (most) 

efficiently on such platforms by overcoming OS limits, 
memory limits, and scalability issues 
 

• S2: Specialized Platforms of  
       Heterogeneous Multi-Cores  
▫ exploring best ways to devise and use heterogeneity on 

multi-core nodes, considering core types, accelerators, 
DRAM/NVM memory, frequency scaling, and sleep states, 
with a focus on cloud’s virtualized, multi-tenancy workloads 

 Specialization Big Data To the Edge Automation 



• Selected Research Highlights  

▫ SILT: A Memory-Efficient, High-Performance Key-Value 
Store, Andersen, Kaminsky, SOSP’11 

 key-value store design with very memory-efficient, scalable indices, 
combined with model-driven tuning to match workload 
 

▫ Staged Memory Scheduling: Achieving High Performance 
and Scalability in Heterogeneous Systems, Multu, ISCA’12 

 new memory controller design that enhances performance, reduces 
interference, and increases fairness for apps running on distinct 
heterogeneous cores (e.g., GPUs and CPUs) 
 

▫ The Forgotten 'Uncore': On the Energy-Efficiency of 
Heterogeneous Cores, Schwan, Usenix ATC’12 

 investigates the opportunities and limitations in using heterogeneous 
multicore processors to gain energy-efficiency, highlighting the 
importance of the “uncore” subsystem shares by all cores to such goals 

 

Specialization Highlights 
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Exploiting Heterogeneity (1) 

 

 Execute critical/serial sections on high-power, high-performance 
cores/resources [Suleman+ ASPLOS’09, ISCA’10, Top Picks’10’11, Joao+ ASPLOS’12] 

 Programmer can write less optimized, but more likely correct programs  



Exploiting Heterogeneity (2) 

 

 Partition memory controller and on-chip network bandwidth 
asymmetrically among threads [Kim+ HPCA 2010, MICRO 2010, Top 

Picks 2011] [Nychis+ HotNets 2010] [Das+ MICRO 2009, ISCA 2010, Top Picks 
2011] 

 Higher performance and energy-efficiency than symmetric/free-for-all 



Exploiting Heterogeneity (3) 

 

 Have multiple different memory scheduling policies; apply them 
to different sets of threads based on thread behavior [Kim+ MICRO 

2010, Top Picks 2011] [Ausavarungnirun, ISCA 2012] 

 Higher performance and fairness than a homogeneous policy 



Hybrid Memory Systems 

 

 

 

 

 

 

 

 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 

Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 

 

 

CPU 
DRA
MCtrl 
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Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



Automation Pillar 

• Automation is crucial to cloud reaching potential 
▫ We suspect that no one here needs to be convinced of this… 

 

• Management is very hard, but cloud makes it worse 
▫ Much larger scale 

▫ Much more varied mix of applications/activities 

▫ Much less pre-knowledge of applications 

▫ And, we’re adding in platform specialization  
 

• Leaps forward needed on many fronts… 
▫ Diagnosis, scheduling, instrumentation, isolation, tuning, … 

 Specialization Big Data To the Edge Automation 



Automation Projects 

• A1: Resource Scheduling for     
       Heterogeneous Cloud Infrastructures 
▫ maximizing the effectiveness of a cloud composed of 

diverse specialized platforms servicing diverse app types 
▫ enabling software framework specialization via 

hierarchical scheduling 
 

• A2: Problem Diagnosis and Mitigation 
▫ new tools and techniques for rapid, robust diagnosis of 

failures and performance problems 
▫ automated mitigation based on “quick and dirty” online 

diagnoses 
 
 
 

 
 Specialization Big Data To the Edge Automation 



• Selected Research Highlights  

▫ Energy Efficiency for Large-Scale MapReduce Workloads 
with Significant Interactive Analysis, Katz, EuroSys’12 

 Energy efficient MapReduce workload manager motivated by empirical 
analysis of real-life MapReduce Interactive Analysis traces 
 

▫ Are Sleep States Effective in Data Centers?, Harchol-Balter, 
Kozuch, IGCC’12 

 Quantifies the benefits of sleep states across three dimensions: (i) the 
variability in the workload trace, (ii) the type of dynamic power 
management policy employed, and (iii) the size of the data center 
 

▫ Reliable State Monitoring in Cloud Datacenters, Liu, 
CLOUD’12 

 Quantitatively estimates the accuracy of monitoring results to capture 
uncertainties introduced by messaging dynamics, and adapts to non-
transient messaging issues by reconfiguring monitoring algorithms 

 

Automation Highlights 



• Selected Research Highlights  

▫ Hierarchical Scheduling for Diverse Datacenter 
Workloads, Stoica, SOCC’13 

 Dominant Resource Fairness (NSDI’11) extended to hierarchical setting 
 

▫ Sparrow: Distributed, Low Latency Scheduling, Stoica, 
SOSP’13 

 Decentralized scheduler for jobs with low-latency (100 ms) parallel 
tasks 

 

▫ A Hidden Cost of Virtualization when Scaling Multicore 
Applications, G., Kozuch, HotCloud’13 

 Idleness consolidation to reduce a surprising VMM cost 

 

▫ Guardrail: A High Fidelity Approach to Protecting 
Hardware Devices from Buggy Drivers, G., Kozuch, Mowry, 
ASPLOS’14 

 

Automation Highlights 



Scheduling for Heterogeneous Clouds 

• Many execution frameworks + Mix of platform types 

• Goal: Cluster Scheduler that gets frameworks to “play 
nice” & matches work to suitable platform 
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Cluster Resource Scheduling Substrate 



• Mesos: A platform for fine-grained resource 
sharing in the data center, Joseph, Katz, Stoica, 
NSDI’11 

 

 

 
• Tetrisched: Space-Time Scheduling for 

Heterogeneous Datacenters, Ganger, Kozuch, 
Harchol-Balter 

▫ Extends Mesos’ resource offer to utility function; tetris-
inspired scheduler 

 

 

Scheduling for Heterogeneous Clouds 
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Anomaly Detection in Hadoop Clusters 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
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black-box 
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Questions 
• How to detect performance problems in the absence of labeled data?  
• How to distinguish legitimate application behavior vs. problems?  

End-to-end 
flows 

Labeled  
End-to-end flows 

Normalized black-
box metrics 

Anomalous nodes 



Anomaly Detection -- Approach 

• Detect performance problems using “peers” 
▫ Empirical analysis of production data to identify peers 

 219,961 successful jobs (Yahoo! M45 and OpenCloud) 

 89% of jobs had low variance in their Map durations 

 65% of jobs had low variance in their Reduce durations 

▫ Designate tasks belonging to the same job as peers 

 

• At the same time, behavior amongst peers can 
legitimately diverge due to various application factors 
▫ Identified 12 such factors on OpenCloud 

▫ Example: HDFS bytes written/read 
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list of problems  
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Problem Localization 
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Visualization 

visualizations to 
support root-cause 
inference  

white-box 
instrumentation 

black-box 
instrumentation 

Questions 
• How to identify problems due to combination of factors? 
• How to distinguish multiple ongoing problems? 
• How to find resource that caused the problem? 
• How to handle “noise” due to flawed anomaly detection? 

End-to-end 
flows 

Labeled  
End-to-end flows 

Normalized black-
box metrics 

Anomalous nodes 



   Priya Narasimhan  © January 14 Carnegie Mellon University 
28 



TaskTracker 
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Job-centric 
data flows 

Fusing the Metrics 



Impact of Fusion 

QUESTION: Does fusion of metrics provide insight on root-cause? 

  

METHOD: Hadoop EC2 cluster, 10 nodes, fault injection.  

• Apply problem localization with fused white/black-box metrics. 

30 

Fusion of metrics provides 

insight on most injected faults 

Top Metrics Indicted 
Insight on  
root-cause Fault Injected White box  Black-box 

Disk hog Maps Disk ✓ 

Packet-loss Shuffles - ✗ 

Map hang (Hang1036) Maps - ✓ 

Reduce hang (Hang1152) Reduces - ✓ 



Theia: Visual Signatures of Problems 

• Maps anomalies observed to broad problem classes 
▫ Hardware failures, application issue, data skew 

• Supports interactive data exploration  
▫ Users drill-down from cluster- to job-level displays 

▫ Hovering over the visualization gives more context 

• Compact representation for scalability 
▫ Can support clusters with 100s of nodes 

31 

*USENIX LISA 2012 Best Student-Paper Award 
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Big Data Pillar 
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• Extracting insights from large datasets 

▫ “Analytics” or “Data-intensive computing” 

▫ Becoming critical in nearly every domain 

 likely to dominate future cloud data centers 
 

• Need right programming/execution models 

▫ For productivity, efficiency, and agility 

▫ Resource efficient operation on shared, 
specialized infrastructures 

300 EB/yr 

Particle 
Physics 

12 EB/yr 

HD  
Internet  

Video 

~600 TB 

Customer  
Database 

Estimating the Exaflood, Discovery Institute, January 2008 
Amassing Digital Fortunes, a Digital Storage Study, Consumer Electronic Association, March 2008 
 



Big Data Projects 

• B1: Big Learning Systems 
▫ new programming abstractions and execution frameworks 

enabling efficiency and productivity for large-scale 
Machine Learning 

 

• B2: Big Data Storage 
▫ exploring trade-offs and new approaches in Big Data 

storage, including support for high ingress and multi-
framework sharing of data 

 Specialization Big Data To the Edge Automation 



• Selected Research Highlights  

▫ LazyBase: Trading Freshness for Performance in a 
Scalable Database, Ganger, EuroSys’12 

 Simultaneously ingest atomic batches of updates at a very high 
throughput and offer quick read queries to a stale-but-consistent version 
of the data 
 

▫ YCSB++: Benchmarking and Performance Debugging 
Advanced Features in Scalable Table Stores, Gibson, SOCC’11 

 Understanding and debugging the performance of advanced features 
such as ingest speed-up techniques and function shipping filters 

 

▫ Parrot: A Practical Runtime for Deterministic, Stable, 
and Reliable Threads, Gibson, SOSP’13 

 

Big Data Highlights 

+ Big Learning highlights covered in deeper dive 



To the Edge Pillar 
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• Edge devices will participate in cloud activities 

▫ Serving as bridge to physical world (sense/actuate) 

▫ Enhancing interactivity despite location / connectivity 

 

• Need new programming/ execution models 

▫ For adaptive cloud  
+ edge cooperation 
 

 

 

Cloudlet demo 

http://www.google.com/imgres?imgurl=http://www.slashgear.com/wp-content/uploads/2008/12/psion_netbook-480x386.jpg&imgrefurl=http://www.slashgear.com/?s=psion&h=386&w=480&sz=39&tbnid=AdctpruzghAU0M:&tbnh=104&tbnw=129&prev=/images?q=netbook+picture&hl=en&usg=__ReRapFTJUK1DX6l3-woWQv_A2mE=&ei=u6TYStngOY2eMOzp1eQH&sa=X&oi=image_result&resnum=4&ct=image&ved=0CBEQ9QEwAw
http://www.okbuynow.com/7inch-headrest-monitor-with-usbsd-and-builtin-speaker-hf700q_p9274.html


To the Edge Projects 

• E1: Cloud-Assisted Mobile Client  
       Computations 
▫ new abstractions and system architectures for dynamic 

exploitation of edge-local cloud resources to enable rich 
edge device experiences 

 

• E2: Geographically Distributed Data Storage 
▫ new techniques for geographically distributed data 

storage/caching that reduce both access latency & reliance 
on expensive WAN-uplink bandwidth, while providing the 
desired scalability, fault tolerance, consistency & findability 

 
 

 

 

 Specialization Big Data To the Edge Automation 



• Selected Research Highlights  

▫ Don't Settle for Eventual: Stronger Consistency for Wide-
Area Storage with COPS, Andersen, Freedman, Kaminsky, 
SOSP’11 

 Define Causal+ consistency, with scalable implementation 

 

▫ Stronger Semantics for Low-Latency Geo-Replicated 
Storage, Andersen, Freedman, Kaminsky, NSDI’13 

 Eiger improves COPS for read-only, write-only transactions 
 

▫ There Is More Consensus In Egalitarian Parliaments, 
Andersen, Freedman, Kaminsky, SOSP’13 

 ePaxos demonstrates significant latency improvement over well-
studied Paxos for wide-area replica consistency 

 

 

To the Edge Highlights 



• Selected Research Highlights  

▫ The Impact of Mobile Multimedia Applications on Data 
Center Consolidation, Satya, IC2E’13 

 Quantitative support for Cloudlets for multimedia apps 
 

▫ Scalable Crowd-Sourcing of Video from Mobile Devices, 
Satya, Mobisys’13 

 Cloudlets store videos locally, send only metadata to backend search 
engine 

 

▫ Just-in-Time Provisioning for Cyber Foraging, Satya, 
Mobisys’13 

 Launch Personalized VM in Cloudlet in 10 seconds, not 5 minutes 

 

 

 

To the Edge Highlights 



Cloudlets: Bring the cloud to the user 

• Provide cloud-like resources, compute services 
with logical proximity to user 

 

• Like web caches – deployed at the edges 

 

• Like WiFi – decentralized, 
minimally managed 
deployments 

 

Handtalk 
Wearable 

Glove 

Tablet 

Smartphone 

Local 
Cloudlet 

WAN 

Public Clouds 

LAN / WLAN 



Cloudlets vs. On client vs. Cloud 

Face Recognition  
- CDF of 300 requests 

(images) 

Augmented Reality  
- CDF of 100 requests 

(images) 

(ms) 

(ms) 



What should a Cloudlet look like? 

• Full flexibility – support any OS, app framework, 
partitioning methods 

 

• Minimal management – physically install and 
forget model 

 

• Decentralized and stateless 

 

• Provisioned  from cloud, user devices 

  Virtual Machines 

 



Rapid Provisioning of Personalized VM 



Harnessing Effortless Video Capture  



Gigasight 



• Highlights from 4 Research Pillars 

▫ Specialization 

▫ Automation 

▫ Big Data 

▫ To the Edge 

 

• Deeper dive on  
Big Learning 

Outline 



Three Big Learning Frameworks @ ISTC-CC: 

 

• Spark 

 

• GraphLab 

 

• Stale Synchronous Parallel 

 

Big Learning Deeper Dive 



• Resilient Distributed Datasets: A Fault-Tolerant 
Abstraction for InMemory Cluster Computing, 
Stoica, NSDI’12, best paper 

 A restricted form of shared memory, based on coarse-grained 
deterministic transformations rather than fine-grained updates 
to shared state:  expressive, efficient and fault tolerant 

 

• Discretized Streams: Fault-Tolerant Streaming 
Computation at Scale, SOSP’13 

 
 

Spark 

Features: 
• In-memory speed w/fault tolerance via logging transforms 
• Bulk Synchronous 



GraphLab - 1 

Scheduler Consistency Model 

Graph Based 
Data Representation 

Update Functions 
User Computation 

Graph Parallel: “Think like a vertex” 



Touches a large 
fraction of graph 

(GraphLab 1) 

Sequential 
Vertex-Updates 

Produces many 
messages 
(Pregel) 

Edge information 
too large for single 

machine 

Asynchronous consistency 
requires heavy locking (GraphLab 1) 

Synchronous consistency is prone to 
stragglers (Pregel) 

Problem: High Degree Vertices Limit Parallelism 



Y 

GraphLab 2 Solution: Factorized Updates  

(      +      )(      ) Y 

Y Y F1 F2 

Y Y 

O(1) data transmitted over network 

▫ PowerGraph: Distributed Graph-Parallel Computation 
on Natural Graphs, Guestrin, OSDI’12 
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Runtime (s) 

Multicore Performance 

GraphLab 1 

Pregel (implemented in GraphLab) 

GraphLab2 

PageRank (25M Vertices, 355M Edges,  

                      Powerlaw Graph) 

GraphLab 2 has significantly faster convergence rate 



Triangle Counting in Twitter Graph 

40M Users   
1.2B Edges 

Total: 
34.8 Billion Triangles 

Hadoop results from [Suri & Vassilvitskii '11] 

GraphLab 

Hadoop 

1536 Machines 
423 Minutes 

64 Machines, 1024 Cores 
1.5 Minutes 



• Fast! 

• Solves tasks as large as 
current distributed systems 

• Minimizes non-sequential 
disk accesses  
▫ Efficient on both SSD and 

hard-drive 

• Parallel, asynchronous 
execution 

GraphChi – disk-based GraphLab 

• Novel Parallel Sliding 
Windows algorithm 

▫ GraphChi: Large-Scale Graph Computation on Just a PC, 

Guestrin, Blelloch, OSDI’12 



Triangle Counting in Twitter Graph 

40M Users   
1.2B Edges 

Total: 34.8 Billion Triangles 

Hadoop results from [Suri & Vassilvitskii '11] 

GraphLab 

GraphChi 

Hadoop 59 Minutes 

64 Machines, 1024 Cores 
1.5 Minutes 

GraphLab 

GraphChi 

Hadoop 

1536 Machines 
423 Minutes 

59 Minutes, 1 Mac Mini! 



Three Big Learning Frameworks @ ISTC-CC: 

 

• Spark 

 

• GraphLab 

 

• Stale Synchronous Parallel 
▫ More Effective Distributed ML via a Stale Synchronous 

Parameter Server, Ganger, G., Gibson, Xing, NIPS’13 oral 

 

 

Big Learning Deeper Dive 



Parameter Servers for Distributed ML 

• Provides all machines with convenient access to 
global model parameters 

• Enables easy conversion of single-machine parallel 
ML algorithms 

▫ “Distributed shared memory” programming style 

▫ Replace local memory access with PS access 

56 

Parameter 
Table 

UpdateVar(i) { 
  old = y[i] 
  delta = f(old) 
  y[i] += delta 
} 

UpdateVar(i) { 
  old = PS.read(y,i) 
  delta = f(old) 
  PS.inc(y,i,delta) 
} 

Single 
Machine 
Parallel 

Distributed 
with PS 

(one or more 
machines) 

Worker 1 Worker 2 

Worker 3 Worker 4 

† Ahmed et al. (WSDM 2012), Power and Li (OSDI 2010) 



The Cost of Bulk Synchrony 
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1 

1 

1 

1 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

2 

2 

2 

2 

3 

3 

3 

3 

Threads must wait for each other 
End-of-iteration sync gets longer with larger clusters 

 
Precious computing time wasted 

Wasted computing time! 

Time 

But: Fully asynchronous => No algorithm convergence guarantees 



Stale Synchronous Parallel 

Allow threads to usually run at own pace 
Fastest/slowest threads not allowed to drift >S iterations apart 

Protocol: check cache first; if too old, get latest version from network 
Consequence: fast threads must check network every iteration 

Slow threads check only every S iterations – fewer network accesses, so catch up! 

Iteration 0 1 2 3 4 5 6 7 8 9 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Staleness Threshold 3 
Thread 1 waits until 
Thread 2 has reached iter 4 

Thread 1 will always see 
these updates 

Thread 1 may not see 
these updates (possible error) 



SSP uses networks efficiently 
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Time Breakdown: Compute vs Network 
LDA 32 machines (256 cores), 10% data per iter 

Network waiting time 

Compute time 

Network communication is a huge bottleneck with many machines 
SSP balances network and compute time 

BSP 



SSP vs BSP and Async 
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Seconds 

LDA on NYtimes Dataset 
LDA 32 machines (256 cores), 10% docs per iter 

BSP (stale 0) 

stale 32 

async 

BSP has strong convergence guarantees but is slow 
Asynchronous is fast but has weak convergence guarantees 
SSP is fast and has strong convergence guarantees 

60 

NYtimes data 
N = 100M tokens 
K = 100 topics 
V = 100K terms 



ISTC-CC: Research Projects 

Project  Personnel  

S1  Specialized Platforms of Wimpy Nodes   Andersen[C], Schwan[G], Freedman[P],  

 Kaminsky[I], Kozuch[I], Pillai[I] 

S2  Specialized Platforms of Heterogeneous  

 Many-Cores  

 Mowry[C], Mutlu[C], Gavrilovska[G], Schwan[G],  

 Yalamanchili[G], Martonosi[P], Gibbons[I], Kozuch[I]  

A1  Resource Scheduling for Heterogeneous  

 Cloud Infrastructures 

 Joseph[B], Katz[B], Stoica[B], Ganger[C], Harchol-Balter[C],  

 Kozuch[I]  

A2  Problem Diagnosis and Mitigation  Ganger[C], Narasimhan[C], Eisenhauer[G], Liu[G], 

 Schwan[G], Wolf[G]  

B1  Big Learning Systems  Stoica[B], Andersen[C], Blelloch[C], Ganger[C], Gibson[C],  

 Smola[C], Xing[C], Guestrin[W], Gibbons[I]  

B2  Big Data Storage  Andersen[C], Ganger[C], Gibson[C], Xing[C], Pu[G],  

 Schwan[G] 

E1  Cloud-Assisted Mobile Client  

 Computations  

 Satya[C], Siewiorek[C], Gavrilovska[G], Liu[G], Schwan[G],  

 Martonosi[P], Pillai[I]  

E2  Geographically Distributed Data Storage  Andersen[C], Satya[C], Siewiorek[C], Freedman[P],   

 Kaminsky[I], Pillai[I] 



• GraphBuilder 1.0 released open source in Jun’13 

• GraphLab 2.2 released open source in Jul’13 

 

 

• Spark 0.8 release Sep’13 – Apache incubator 

 
 

• Mesos 0.14 released Oct’13 – Apache 

 

• Other open source releases on github include:  
Eiger, EPaxos, Parrot, Cloudlet OpenStack++, 
CuckooFilter, RankSelect, MemC3, NVMalloc, etc. 

Open Source Code Releases in Year 2 

Open Source page: www.istc-cc.cmu.edu/research/ossr/ 



Intel Science & Technology Center for Cloud Computing 

Underlying Infrastructure 
enabling the future 
of cloud computing 

www.istc-cc.cmu.edu 



A number of these slides were adapted from slides 
created by  the following ISTC-CC Faculty: 

 

• Dave Andersen, Greg Ganger, Garth Gibson, 
Carlos Guestrin, Onur Mutlu, Priya Narasimhan, 
Babu Pillai, M. Satyanarayanan, and Eric Xing  

 

…and their students 

 

All other slides are © Phillip Gibbons 

Slide Credits 


